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ABSTRACT
This paper demonstrates GeoTorchAI, a spatiotemporal deep learn-
ing framework. In recent years, many neural network models have
been proposed focusing on the applications of raster imagery and
spatiotemporal non-imagery datasets. Implementing these mod-
els using existing deep learning frameworks, such as PyTorch and
TensorFlow, requires nontrivial coding efforts from the develop-
ers because these models differ extensively from state-of-the-art
models supported by existing deep learning frameworks. Moreover,
existing deep learning frameworks lack the support for scalable
data preprocessing, a mandatory step for converting spatiotempo-
ral datasets into trainable tensors. GeoTorchAI enables machine
learning practitioners to implement spatiotemporal deep learning
models with minimum coding efforts on top of PyTorch. It provides
state-of-the-art neural network models, ready-to-use benchmark
datasets, and transformation operations for raster imagery and spa-
tiotemporal non-imagery datasets. Besides deep learning, GeoTor-
chAI contains a data preprocessing module that allows preparing
trainable spatiotemporal vector datasets and the transformation of
raster images in a cluster computing setting.
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1 INTRODUCTION
Geospatial artificial intelligence applications have recently gained
a lot of attention due to the abnormal rise of raster and spatiotem-
poral datasets. Examples include but are not limited to: traffic flow
forecasting, bike/taxi volume prediction, land, buildings, trees, and
water classification, as well as raster image segmentation. Many
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models have been proposed in the literature which are success-
ful in spatiotemporal prediction and raster image classification
tasks. These models represent extensions of commonly used neural
network models, e.g., Convolutional Neural Network (CNN) and
variants of Recurrent Neural Network (RNN), or hybrid models
combining various types of neural networks.

Existing deep learning frameworks such as PyTorch, TensorFlow,
Keras, MXNet and other libraries in their ecosystem suffer from the
following limitations when they are used for implementing raster
and spatio-temporal deep learning models:
• Limitation 1: Grid-based and graph-based datasets are the two
basic divisions of spatio-temporal non-imagery datasets based on
their tensor representation. Existing spatio-tempral deep learning
libraries, such as PyTorch Geometric Temporal [5] and Dynamic
GEM, support only graph-based datasets and models, leaving
grid-based models and datasets unaddressed.

• Limitation 2: CNNs have been shown to be effective for two-
and three-channel images, however raster images may have more
than three spectral bands. Some effective raster image modeling
algorithms, such DeepSAT [1] and DeepSATV2 [4], suggest inte-
grating hand-crafted raster image features in the feature vector.
Implementing these models using existing deep learning systems
costs the developers nontrivial manual efforts.

• Limitation 3: Raw spatio-temporal datasets must undergo ex-
tensive preprocessing before they can be turned into trainable
tensors. Due to the size of these datasets, preprocessing with
Pandas and GeoPandas DataFrame results in slow preprocessing
and memory errors. Because the usage of distributed geographic
data processing systems like Apache Sedona necessitates domain
expertise, machine learning practitioners rely only on benchmark
datasets that are already ready for use.
This paper demonstrates GeoTorchAI1 [2], a library on top of

PyTorch and Apache Sedona that overcomes all the limitations dis-
cussed above. GeoTorchAI focuses on grid-based spatio-temporal
datasets coupled with raster datasets, as opposed to PyTorch Geo-
metric Temporal, Dynamic GEM, and TorchGeo, which cover either
graph-based datasets or raster datasets. None of these existing
systems support scalable data preprocessing, which has been in-
tegrated under GeoTorchAI. Table 1 shows how, in terms of sup-
porting features, GeoTorchAI differs from other spatio-temporal
deep learning frameworks. For both raster and grid-based spatio-
temporal domains, GeoTorchAI includes benchmark datasets, state-
of-the-art models, transformation operations, and data preprocess-
ing functions. The data preprocessing module utilizes Apache Se-
dona, a cluster computing system for managing large-scale geospa-
tial data on top of Apache Spark, while the deep learning module
1GeoTorchAI GitHub Repository: https://github.com/DataSystemsLab/GeoTorchAI
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utilizes PyTorch. Users of GeoTorchAI do not need to be famil-
iar with the PySpark and Apache Sedona coding syntaxes, even
though the data preprocessing module runs on Apache Sedona. In
order to filter and transform raster images and turn unprocessed
spatio-temporal datasets into grid-based spatio-temporal tensors,
GeoTorchAI offers a variety of Python functions. Since the prepro-
cessing module runs on a cluster computing system, it is distributed
and parallelized, similar to Apache Spark, and can reduce latency
and memory errors. The deep learning module can be used in a
fully PyTorch way targeting the applications like spatio-temporal
traffic and weather prediction, satellite image classification, and
satellite image segmentation.

Table 1: Features of Spatiotemporal Deep Learning Frameworks

Library Spatial Temporal Grid Raster Scalable
Preprocessing

PT Geometric ✓ ✗ ✗ ✗ ✗

Spektral ✓ ✗ ✗ ✗ ✗

TorchGeo ✓ ✗ ✗ ✓ ✗

Dynamic GEM ✓ ✓ ✗ ✗ ✗

PT Geometric Temporal ✓ ✓ ✗ ✗ ✗

GeoTorchAI ✓ ✓ ✓ ✓ ✓

We demonstrate four different features of GeoTorchAI in this
paper. In the first demonstration, we prepare a spatiotemporal grid
tensor from a large spatiotemporal raw dataset. Similarly to the first
demo, the second demonstration also focuses on the preprocess-
ing module by loading, transforming, and writing raster imagery
datasets. The third and fourth demonstrations are based on the
deep learning module of GeoTorchAI. The third demo scenario
showcases the training process of a spatiotemporal deep learning
model using GeoTorchAI. Finally, we apply a deep learning model
trained on GeoTorchAI to classify satellite images.
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Figure 1: System Architecture of GeoTorchAI

GeoTorchAI consists of two main modules, as depicted in Figure
1 - Deep Learning and Data Preprocessing. The data preprocessing
module uses Apache Sedona’s geospatial computation power and
enables processing in a cluster computing environment, while the
deep learning module utilizes PyTorch’s GPU acceleration.

2.1 Deep Learning Module
Datasets, Models, and Transforms are the three sub-modules avail-
able in the deep learning module of GeoTorchAI.
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Figure 2: GeoTorchAI Deep Learning Module

2.1.1 GeoTorchAI Datasets. GeoTorchAI datasets module has sep-
arate packages for raster imagery datasets and grid-based non-
imagery datasets. Each of these packages contains easy-to-use
benchmark datasets for widely used applications in the literature.
GeoTorchAI datasets extend 𝑡𝑜𝑟𝑐ℎ.𝑢𝑡𝑖𝑙𝑠 .𝑑𝑎𝑡𝑎.𝐷𝑎𝑡𝑎𝑠𝑒𝑡 class from
PyTorch and use the same iterator. That is why these datasets can
be accessed and iterated similarly to PyTorch datasets and other
datasets provided by libraries in the PyTorch ecosystem. Users can
split a GeoTorchAI dataset into train and test sets and pass them
to 𝑡𝑜𝑟𝑐ℎ.𝑢𝑡𝑖𝑙𝑠 .𝑑𝑎𝑡𝑎.𝐷𝑎𝑡𝑎𝐿𝑜𝑎𝑑𝑒𝑟 to load samples as batches as well
as in parallel by 𝑡𝑜𝑟𝑐ℎ.𝑚𝑢𝑙𝑡𝑖𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 workers. They can include
transformation operations to the datasets using transforms offered
by 𝑔𝑒𝑜𝑡𝑜𝑟𝑐ℎ𝑎𝑖.𝑡𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑠 package or any user-defined transfor-
mations. Also, GeoTorchAI datasets can be loaded into either GPU
and CPU based on client device configuration.

GeoTorchAI datasets module enables users to define any cus-
tom datasets instead of relying only on ready-to-use benchmark
datasets. For this purpose, it provides classes, which are helpful
in loading datasets that are transformed offline or created from
raw spatiotemporal datasets using the GeoTorchAI preprocessing
module described in Section 2.2. Users can choose which spec-
tral bands they want to include in the feature vector for raster
datasets. Additionally, GeoTorchAI raster datasets give users the
freedom to include additional feature vectors extracted from raster
images. GeoTorchAI raster datasets support automatically extract-
ing some frequently used spectral features and including them in
the feature vector for users who lack domain knowledge of these
spectral features. All grid-based spatiotemporal datasets give users
two adaptable choices for sampling during iterations. 1) As sug-
gested by ST-ResNet [6], data samples can be accessed in terms
of closeness, period, and trend features. 2) To aid in the training
of ConvLSTM and other sequence models, samples can also be
retrieved as histories and predictions.

2.1.2 GeoTorchAI Models. The models sub-module also contains
separate packages for raster models and grid-based spatiotemporal
models, just like the datasets module. These packages have neu-
ral network layers for state-of-the-art raster and spatiotemporal
models that have been published. Similarly to the neural network
layers in PyTorch, GeoTorchAI models extend the 𝑡𝑜𝑟𝑐ℎ.𝑛𝑛.𝑀𝑜𝑑𝑢𝑙𝑒

class so that these models can be used as standalone neural network
layers in Python as any other PyTorch neural network layers.
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Models are implemented utilizing existing PyTorch neural net-
work layers as building blocks. In all classes that are available as
model layers and benchmark datasets, GeoTorchAI reduces the
number of public methods and required parameters. Sufficient op-
tional parameters are provided to allow users to customize the
layers according to their requirements. Either the CPU or the GPU
can be used to run models. GeoTorchAI supports both cumulative
and incremental training. While cumulative training only updates
the model weights once at the end of an epoch, incremental training
updates the weights after each batch.

2.1.3 GeoTorchAI Transforms. GeoTorchAI transforms module of-
fers transformation operations that can be used with raster datasets
when training a model. GeoTorchAI transforms can be combined
with any other transformation operations, just like the PyTorch
transforms. Transformation operations can either be applied to
samples when iterating over a dataset or be passed as parameters
when creating a dataset. New features, such as the normalized dif-
ference index of two bands, can be added as a new band to the raster
image using the transformation operations. These features make
modeling raster images more effective. GeoTorchAI also supports
offline transformations prior to model training.

2.2 Data Preprocessing Module
To create spatiotemporal tensors, raw spatiotemporal datasets need
to go through a number of preprocessing steps. These raw datasets
are typically very large in size, and creating tensors from them
requires a lot of memory and processing time. In addition to con-
verting the geospatial coverage of the dataset into an𝑚 × 𝑛 grid
and the desired temporal range into T time intervals, the user re-
quires to aggregate the data samples within each grid cell at each
time interval. Spatial join queries, which take a lot of time and
memory, must be used for this aggregation process. These massive
raw datasets must be preprocessed using distributed and cluster
computing geospatial data processing frameworks like Apache Se-
dona. Raster datasets must also undergo preprocessing operations
in addition to spatiotemporal datasets. These operations can be
divided into transformation operations and map algebra operations.
Transformation operations, such as normalizing a band, appending
the normalized difference index between two bands as a separate
band, deleting or inserting a band, etc., are useful for changing the
spectral bands of a raster image. In contrast, map algebra operations
are used to extract features, including obtaining various normalized
difference indices, the mean, mode, modulas, and the square root
of a band, etc. Raster image processing on distributed systems can
decrease processing lag and memory-related errors because raster
image datasets are also very large in volume. The amount of time
and memory required for model training can be greatly decreased
by performing the transformations offline in a distributed environ-
ment prior to training the model instead of performing the same
on-the-fly during model training.

Two sub-modules, one for spatiotemporal grid data preprocess-
ing and the other for raster image preprocessing, are available under
GeoTorchAI preprocessing module. Machine learning practition-
ers who lack domain and programming knowledge of geospatial
cluster computing frameworks can process raster and spatiotempo-
ral datasets in a distributed cluster computing setting using these

modules. Users can use the preprocessing methods in a proper
Pythonic way, although the preprocessing module runs on Apache
Sedona. GeoTorchAI adds necessary satellite transformation func-
tions and GeoTIFF image writing support to Apache Sedona to
facilitate scalable raster image transformation. Spatial joins and
other optimized operations implemented through Apache Sedona
are a black box to the users. Figure 3 depicts a few examples of
raster image preprocessing.
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Figure 3: Raster Image Preprocessing Example

3 DEMONSTRATION SCENARIOS
We demonstrate GeoTorchAI using four different use cases which
are described in this section. For each use case, GeoTorchAI provides
an interface to load the data, set up the parameters, and display the
outcome. A few screenshots of the interface are provided in Figures
4 and 5. The interface allows the users to perform data preprocess-
ing, training, and testing interactively. An initial prototype of the
demonstration2 using the interface has been made available.

3.1 Use Case 1: Preparing Trainable Tensor
Consider an application that uses the New York City taxi trip
dataset3 to train a model which predicts the number of taxi pickups
at various locations in New York City for future timesteps. For this
purpose, the raw dataset of more than 1 billion taxi trip records
needs to be converted into a trainable tensor. In this use case, we
discuss the steps for forming a spatiotemporal tensor from the raw
NYC taxi trip dataset. The tensor represents the spatial coverage of
NYC City as an ℎ ×𝑤 grid where h and w stand for the height and
width of the grid. The final tensor will contain the number of taxi
pickups in each cell of the grid at various time intervals. The first
step is to form the ℎ ×𝑤 grid by loading the taxi zone shape file via
load_geo_data and calling the method generate_grid_cells under the
class geotorchai.preprocessing.grid.SpacePartition. The next step is
to load the CSV file, which contains the taxi trip information. Most
of the remaining steps can be completed with various methods
available in STManager class under 𝑔𝑒𝑜𝑡𝑜𝑟𝑐ℎ𝑎𝑖.𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔.𝑔𝑟𝑖𝑑
package.Methods such as 𝑡𝑟𝑖𝑚_𝑜𝑛_𝑑𝑎𝑡𝑒𝑡𝑖𝑚𝑒 ,𝑔𝑒𝑡_𝑢𝑛𝑖𝑥_𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ,
and 𝑎𝑑𝑑_𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝑠𝑡𝑒𝑝𝑠 can be used to generate required time in-
tervals from the pickup times. Latitudes and longitudes of pickup
locations need to be converted to geometrical point objects with the
help of the 𝑎𝑑𝑑_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑝𝑜𝑖𝑛𝑡𝑠 method. The next step is to count
the number of pickup locations in various cells at each time interval
using the method aggregate_st_dfs. The last step is to convert the
aggregated DataFrame into an array, with a shape similar to the

2https://kanchanchy.github.io/files/video/Demo-GeoTorchAI.mp4
3https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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target spatiotemporal tensor, utilizing the method get_st_array. Ma-
chine learning practitioners can load the returned spatiotemporal
array into GeoTorchAI as a tensor with the 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 Dataset class,
which is available under the package 𝑔𝑒𝑜𝑡𝑜𝑟𝑐ℎ𝑎𝑖.𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠 .𝑔𝑟𝑖𝑑 .

3.2 Use Case 2: Raster Data Preprocessing
The second use case of the demonstration focuses on transform-
ing raster data using GeoTorchAI. An end-to-end raster process-
ing example can be outlined as a series of the following simple
steps. 1) Loading raster images by calling 𝑙𝑜𝑎𝑑_𝑔𝑒𝑜𝑡𝑖 𝑓 𝑓 _𝑖𝑚𝑎𝑔𝑒

method, 2) Calling the required methods from RasterProcessing
depending on the target transformation. A few examples include
𝑔𝑒𝑡_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑏𝑎𝑛𝑑 to normalize the values of a particular band,
𝑎𝑝𝑝𝑒𝑛𝑑_𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒_𝑖𝑛𝑑𝑒𝑥 to append the normalized
difference index of two separate bands as a new spectral band,
𝑚𝑎𝑠𝑘_𝑏𝑎𝑛𝑑_𝑜𝑛_𝑔𝑟𝑒𝑎𝑡𝑒𝑟_𝑡ℎ𝑎𝑛 to mask the values of a spectral band
based on an upper threshold, etc. 3) Writing the transformed images
by calling𝑤𝑟𝑖𝑡𝑒_𝑔𝑒𝑜𝑡𝑖 𝑓 𝑓 _𝑖𝑚𝑎𝑔𝑒 method.

Figure 4: Raster Data Preprocessing Interface

3.3 Use Case 3: Raster Model Training
An end-to-end model training pipeline includes loading the dataset,
defining the neural network model and training parameters, fol-
lowed by model training. Let us discuss the model training pipeline
on GeoTorchAI for a spatiotemporal application - classifying Eu-
roSAT images [3] using DeepSAT V2 [4] model. The first step is
to load the EuroSAT dataset used by instantiating EuroSAT class
from GeoTorchAI package geotorchai.datasets.raster. If the dataset
needs to be downloaded into a local directory, it can be done by
setting the parameter 𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 to 𝑇𝑟𝑢𝑒 . Raster image-based deep
learning models such as DeepSAT V2 propose several handcrafted
image features to boost the accuracy of the trained model. Those
features can be included automatically in the model training by
setting the 𝑖𝑛𝑐𝑙𝑢𝑑𝑒_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠 parameter to 𝑇𝑟𝑢𝑒 . Later,

we initialize DeepSAT V2 as our desired raster model from the
package geotorchai.models.raster. Model initialization is followed by
setting model hyperparameters which include loss function, opti-
mizer, learning rate, and the number of epochs. During each epoch
iteration, model training happens with a forward pass followed by a
backward pass. In the forward pass, we pass the data samples of the
training dataset to the model and get the output. The backward pass
updates the model weights based on the loss between the model
output and the ground-truth output.

Figure 5: Raster Model Testing Interface

3.4 Use Case 4: Raster Image Classification
The fourth use case of the demonstration classifies raster images
using a model trained with GeoTorchAI. The first step is to load a
model that has been trained to classify raster images. We load the
DeepSAT V2 model trained as part of use case 3 in Section 3.3 for
our demonstration purpose. It should be noted that other models
trained for raster image classification can also be loaded instead of
DeepSAT V2. After loading the model, the next step is to select a
raster image for classification. The model will predict the class of
the selected image. The shape of the image should be similar to that
of images, which have been used to train the model. Classifications
can also be done in batches instead of classifying a single image.
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