Deep Learning with Spatiotemporal Data: A Deep
Dive into GeotorchAl

Kanchan Chowdhury
Arizona State University
Tempe, USA
kchowdhl @asu.edu

Abstract—In recent years, numerous neural network models
have been put forth, with an emphasis on the applications
of raster imagery and spatiotemporal non-imagery datasets.
Implementing these models using existing deep learning frame-
works, such as PyTorch and TensorFlow, requires nontrivial
coding efforts from the developers although these deep learning
frameworks support the implementation of various state-of-the-
art machine learning models, such as neural networks, hidden
Markov models, and support vector machines. This is due to the
fact that the models emphasized on spatiotemporal applications
differ extensively from state-of-the-art models supported by exist-
ing deep learning frameworks. Moreover, existing deep learning
frameworks lack the support for scalable data preprocessing,
a mandatory step for converting spatiotemporal datasets into
trainable tensors. Considering the limitations of existing deep
learning frameworks, we present GeoTorchAl, a framework for
deep learning and scalable data processing on raster imagery
and spatiotemporal non-imagery datasets. GeoTorchAl enables
machine learning practitioners to implement spatiotemporal deep
learning models with minimum coding efforts on top of PyTorch.
It provides state-of-the-art neural network models, ready-to-use
benchmark datasets, and transformation operations for raster
imagery and spatiotemporal non-imagery datasets. Besides deep
learning, GeoTorchAlI contains a data preprocessing module and
a DFtoTorch Converter module that enable the formation of
trainable spatiotemporal vector datasets and the mapping of
preprocessed DataFrames into PyTorch tensors, respectively.

Index Terms—spatiotemporal deep learning, raster images

I. INTRODUCTION

Due to the rapid usage of GPS-enabled devices by moving
objects and the availability of traffic sensors and satellite
devices, the volume of raster and spatiotemporal datasets is
growing at an unprecedented rate. Geospatial artificial intel-
ligence applications have recently gained a lot of attention
due to the abnormal rise of raster and spatiotemporal datasets.
Examples include but are not limited to traffic flow forecasting,
weather forecasting, bike/taxi volume prediction [1], traffic
speed prediction, crowd flow prediction [2], land, buildings,
trees, and water classification [3], slum and urban image
classification, as well as raster image segmentation [4]. Many
models have been proposed in the literature which are success-
ful in spatiotemporal prediction and raster image classification
tasks. These models represent extensions of commonly used
neural network models, e.g., Convolutional Neural Network
(CNN) and variants of Recurrent Neural Network (RNN), or
hybrid models combining various types of neural networks.

Mohamed Sarwat
Wherobots Inc.
Scottsdale, USA

mo @wherobots.com

Deep learning frameworks such as PyTorch [5], Tensor-
Flow [6], Keras [7], and MXNet [8] ease the integration of
deep learning by providing implementations of many state-
of-the-art neural networks. PyTorch [5] has recently gained
increased popularity among these libraries because of its
modular structure and easy Pythonic coding style. PyTorch
ecosystem consists of various libraries which further enhance
the functionality of PyTorch for specific domains. For ex-
ample, Torchvision [9] extends the functionality of PyTorch
for manipulating images. However, existing deep learning
frameworks such as PyTorch, TensorFlow, Keras, MXNet, and
other libraries in their ecosystem suffer from the following
limitations when they are used for implementing raster and
spatiotemporal models discussed in the previous paragraph:

« Limitation 1: Spatiotemporal datasets can be divided into
two main categories based on their tensor representation:
grid-based and graph-based datasets [10]. Existing spa-
tiotemporal deep learning libraries, such as PyTorch Geo-
metric Temporal [11] and Dynamic GEM [12], support only
graph-based datasets and models, leaving grid-based models
and datasets unaddressed.

o Limitation 2: CNNs have been shown to be effective
for two-channel grayscale and three-channel RGB images.
However, raster images may have more than three spectral
bands. Some effective raster image modeling algorithms,
such as DeepSAT [13] and DeepSATV?2 [14], suggest inte-
grating hand-crafted raster image features in the feature vec-
tor. Implementing these models using existing deep learning
systems costs the developers nontrivial manual efforts.

« Limitation 3: Converting raw spatiotemporal datasets into
trainable tensors requires extensive preprocessing steps,
including time-consuming and memory-hungry spatial join
and data aggregation operations. Because the usage of
distributed spatial data processing systems like Apache
Sedona [15] necessitates domain expertise, machine learning
practitioners rely only on ready-to-use benchmark datasets.
To the best of our knowledge, there are no existing deep
learning systems that allow users to create trainable tensors
from spatiotemporal datasets in a scalable and Pythonic way
without demanding domain expertise.

« Limitation 4: The extraction of satellite image features on
the fly during the training slows down the training step. On

the contrary, extracting these features in a distributed and
parallel setting before model training can boost the training
speed considerably. Extracting the features offline before the
training helps in reusing the features of a dataset every time
these features are used to train a model.

o Limitation S5: The results of scalable preprocessing are
distributed DataFrames that are unsuitable for direct use in
PyTorch, requiring conversion into tensors. This conversion
process often requires time-consuming data collection into
the master node, which may also result in memory errors
on the master node.

In this work, we discuss the design and development
details of GeoTorchAl, which alleviates all the limitations
discussed above. GeoTorchAl is a library on top of Py-
Torch and Apache Sedona for data preprocessing and deep
learning with raster and grid-based spatiotemporal datasets.
GeoTorchAl focuses on grid-based spatiotemporal datasets
coupled with raster datasets, as opposed to PyTorch Geometric
Temporal [11], Dynamic GEM [12], and TorchGeo [16], which
cover either graph-based datasets or raster datasets. None of
these existing systems support scalable data preprocessing,
which has been integrated under GeoTorchAl. GeoTorchAl
contains benchmark datasets, state-of-the-art models, transfor-
mation operations, and data preprocessing functions for both
raster and grid-based spatiotemporal domains. While datasets,
models, and transforms modules run on PyTorch, the data
preprocessing module runs on Apache Sedona [15], a cluster
computing system for managing large-scale geospatial data on
top of Apache Spark. Although the data preprocessing module
runs on Apache Sedona, users of GeoTorchAl do not require
an understanding of the coding syntaxes in Apache Sedona
and PySpark. GeoTorchAl provides various Python functions
to process and transform raster images and to convert raw
spatiotemporal datasets into grid-based spatiotemporal tensors.
Since the preprocessing module runs on a cluster computing
system, it is distributed and parallelized, similar to Apache
Spark, and can reduce latency and memory errors. The deep
learning module can be used in a fully PyTorch way targeting
applications like spatiotemporal traffic and weather prediction,
satellite image classification, and satellite image segmentation.
To address the fifth limitation, we propose an intermediate
DFtoTorch Converter module in GeoTorchAl, which takes the
preprocessed DataFrame and can return the rows as batches in
terms of PyTorch tensors during model training and inference.
We empirically evaluate GeoTorchAI models for three applica-
tions: spatiotemporal prediction, satellite image classification,
and satellite image segmentation. In addition, we evaluate
the training time of models on both GPU and CPU. In the
end, we conduct experiments to verify the efficiency of the
GeoTorchAl data preprocessing module.

This work extends our initial study [17], [18], featur-
ing significant advancements not explored in prior publi-
cations. These enhancements include: 1) supporting lots of
new datasets and models in the deep learning module, 2)
introducing the new DFtoTorch Converter module to map

preprocessed DataFrame into PyTorch tensors, 3) releasing
a new grid-based spatiotemporal traffic prediction dataset, 4)
conducting new experiments on the preprocessing module to
evaluate the effectiveness of end-to-end preprocessing and
deep learning, and 4) evaluating deep learning module on
a new application featuring new models and datasets. In
summary, our contributions are as follows:

o We propose GeoTorchAl, a deep learning and scalable data
processing library for raster and spatiotemporal datasets.

« We propose a deep learning module which contains state-
of-the-art ready-to-use benchmark datasets, transforms, and
models in both raster and spatiotemporal grid categories.

o« We release a new grid-based spatiotemporal traffic pre-
diction dataset, YellowTrip-NYC, based on the number of
taxi pickups and dropoffs. The dataset is available on the
GeoTorchAl GitHub repository.

« We perform an empirical evaluation on both the deep learn-
ing module and data preprocessing module of GeoTorchAl.
Our evaluation shows that performing data transformation
before model training with our preprocessing module can
speed up the training process considerably.

e We perform an end-to-end evaluation of GeoTorchAl by
forming a spatiotemporal tensor dataset with the GeoTor-
chAl preprocessing module and using the same dataset to
train models with the GeoTorchAl deep learning module.

II. BACKGROUND AND RELATED WORKS

Before proceeding with the details of the GeoTorchAl
framework, we define a few important concepts along with
discussing the current state of deep learning with raster and
spatiotemporal datasets.

A. Spatiotemporal Tensor Representation

Tensors are generalizations of vectors and matrices to po-
tentially higher dimensions [19]. For a multivariate dataset,
assume that there are a total of M variables in the dataset. The
complete data is recorded for P locations over T timesteps.
This dataset can be represented as a tensor X € RT#PzM,
Each location P;eP can either be a grid cell, polygon object,
or graph node, depending on the type of the dataset. Spa-
tiotemporal tensors can represent both spatial and temporal
dependencies which we will discuss next.

1) Representing Temporal Dependencies: Temporal de-
pendency in a spatiotemporal tensor is represented in one
of two approaches: sequentially and periodically. Sequential
representation is used mostly where the total time interval
between the initial and end timestamps is equally divided into
several time slots. Since changes in time-series data happen
sequentially as time passes, adjacent timestamps are indexed
in a consecutive manner so that the representation can hold the
temporal correlation. In the case of periodical representation,
the temporal dimension is indexed in a periodic manner, such
as daily, weekly, and monthly. This type of representation is
effective when attribute values at a time index show a similar
pattern periodically. For instance, in the case of a traffic flow

dataset, the number of traffic might be lower than usual during
weekends.

2) Representing Spatial Dependencies: The process of cap-
turing spatial dependency in a spatiotemporal tensor depends
on the type of the dataset. Spatial dependency is captured
by an adjacency matrix in the case of a graph-based dataset,
while grid-based datasets capture spatial dependencies through
an image-like representation. Since GeoTorchAl focuses on
grid-based spatiotemporal datasets, we detail the spatial de-
pendency of grid-based tensors only. In the case of grid-based
representation, the whole area covered by the dataset is consid-
ered a two-dimensional unit. The full spatial unit is converted
into a grid-like structure by partitioning both the x-axis and y-
axis into equal-sized slots such that all cells in the grid become
equal, although slot sizes along the x-axis and y-axis might
be different. Spatial partitions that are located adjacent to each
other in the space also maintain their adjacency in the grid.
This is also called an image-like representation, where the
attribute value in each cell can be considered a pixel value.
For multivariate datasets, each attribute is considered a channel
in an image. Since CNNs are efficient in capturing spatial
dependencies of images, this image-like grid representation is
used to capture spatial dependencies with CNNs. For grid-
based datasets, the representation of spatiotemporal tensor
Xorid jg changed to xorid ¢ RTaHzWzC | where T, H, W,
and C stand for the number of timesteps, grid height, grid
width, and the number of channels/features, respectively.

B. Deep Learning with Grid-Based Spatiotemporal Datasets

The efficiency of a deep learning model in modeling
spatiotemporal prediction tasks depends on its capability to
capture spatial and temporal dependencies in the dataset. Most
of the models [20], [1], [21], [22], [23], [24] capture the
temporal dependency by the use of the variants of RNN
- Long Short Term Memory (LSTM) and Gated Recurrent
Unit (GRU). Some models [1], [21], [22], [23], [25], [26]
introduce CNN’s enhanced version TCN and attention layers
in parallel with RNN variants to model temporal dependency
and demonstrate superior performance [10]. As discussed in
Section II-A2, CNN is used to capture spatial dependency
by most of the models [2], [20], [1], [27], [21], while some
other models capture the spatial dependency with attention
layers [22], [24], [26].

Three types of representations of training datasets used by
grid-based spatiotemporal tensors are discussed below:

Basic Representation: The most basic approach of a grid-
based spatiotemporal model is to use the grid at timestep ¢ as
the data and the grid at timestep ¢+t as the label. The model is
trained to make predictions for timestep ¢+t by looking at the
data at timestep ¢. Here, ¢ is known as the lead time. CNNs can
be used to train this type of model. The prediction accuracy of
these models is limited because predictions at a timestep are
made by looking at the history of only one previous timestep,
while the ground truth might depend on multiple timesteps.

Sequential Representation: To remedy the drawbacks of
this basic representation, a hybrid model, ConvLSTM [28], is

proposed that models the spatial and temporal dependencies
using CNNs and LSTMs, respectively. The training procedure
of this model takes two lengths as inputs - history length
and prediction length. Denoting history length and prediction
length as ¢; and t, respectively, this model uses data at t;
timesteps to predict the labels at the next ¢t timesteps. Figure
1 depicts this representation for history length n — 1 and
prediction length 1. This representation outperforms the basic
presentation because features at a particular timestep depend
the most on its immediate previous timesteps. However, this
representation is limited by the fact that attribute values at a
timestep depend not only on its immediate previous timesteps
but also on the timesteps of the previous day during the
same period as well as external factors such as weekends and
weather conditions.

Timestep 1 Timestep 2 Timestep n-1 : Timestep n

History Prediction

Fig. 1: Sequential Representation of Spatiotemporal Datasets

Periodical Representation:To further improve the predic-
tion accuracy, an advanced representation is proposed by ST-
ResNet [2], which is further inherited and improved by other
models. ST-ResNet concatenates the channels in each timestep
by converting (T, H, W, C) shaped tensors into (H, W, T*C)
shaped ones for the purpose of capturing spatial dependencies
with CNNs. It models the temporal dependency with three
features named Closeness (most recent observations), Period
(daily periodicity), and Trend (weekly trend) [10]. Long-
range spatial dependency between grid cells is modeled by
constructing deep CNN networks with residual learning. Since
ST-ResNet uses CNNs to capture both spatial and temporal
dependency, it has to convert video-like tensors to image-like
tensors, which is a limitation. Other models, such as STDN
and DMVST-Net, address this issue by employing LSTM to
connect with a CNN at each timestep [10].

C. Deep Learning with Raster Datasets

Deep learning with raster datasets usually aims at tasks such
as classification and segmentation of raster images and change
detection in raster images. Similarly to RGB or grayscale
images, raster image-based tasks are also modeled with CNNs
because raster images can also be represented similarly to
RGB and grayscale images with the tensor representation
X € RH*WzC where H, W, and C stand for image height,
image width, and the number of channels/bands, respectively.
The difference is that the number of spectral bands, C, can
be more than 3 for raster images, while it is 2 and 3 for
grayscale and RGB images, respectively. Figure 2 shows the
thirteen spectral bands of a sample satellite image representing
a forest from the EuroSAT dataset [3].

Band-1 Band-2 Band-3 Band-4 Band-5 Band-6 Band-7
o o o 0 o 0 0
20 oo o 0 20 o 0
w0 40 oo 4o 40 o 40
60 lso 2 0 oo Jso o
o 25 s 0 25 0 0 25 50 o 25 50 o 25 50 o 25 s o 25 50
Band-9 Band-11 Band-12
o o o o o

Band-10 Band-13

Fig. 2: Spectral Bands of an Image from EuroSAT Dataset

The efficiency of raster image modeling tasks depends
on the selection of appropriate spectral bands. Deep learn-
ing models such as Fully Convolutional Networks [29] and
UNet [30] have shown efficiency in modeling satellite image
segmentation tasks. For the classification task, SatCNN [31]
proposes a deep convolutional neural network that shows state-
of-the-art performance. To enhance the accuracy of raster
image classification tasks, DeepSat [13] proposes including
some normalized features extracted from raster images in the
feature vector. Basu et al. [32] prove that CNNs cannot learn
Haralick feature representations by themselves. Utilizing this
theory, Deepsat V2 [14] extends DeepSat by enhancing the
architecture of a CNN to include handcrafted features and
outperforms the classification accuracy of earlier works.

D. Spatiotemporal Deep Learning Frameworks

Deep learning frameworks such as PyTorch, TensorFlow,
Keras, and MXNet are generic to all domains and are not fine-
tuned for spatiotemporal datasets. There are several libraries
in the ecosystem of these frameworks which contain advanced
support for spatiotemporal datasets. The features supported
by these popular libraries are listed in Table I. Among
these libraries, Geometric2DR [33], PyTorch Geometric [34],
TF Geometric [35], GEM [36], and StellarGraph [37] can
only model spatial dependency and do not support temporal
dependency. Two other libraries, Dynamic GEM [12] and
PyTorch Geometric Temporal [11], can model temporal de-
pendency, but these libraries only support graph-based spa-
tiotemporal datasets and cannot be applied to raster and grid-
based domains. Another framework, TorchGeo [16], supports
only raster imagery datasets. None of these libraries support
scalable processing of raster and spatiotemporal datasets. So,
our work is completely different from these works because
we focus on supporting raster and grid-based domains. Also,
our work supports scalable and distributed preprocessing of
spatiotemporal datasets, a missing feature in all other libraries.

III. SYSTEM OVERVIEW

Our proposed framework, GeoTorchAl, consists of three
main modules - Deep Learning, Data Preprocessing, and
DFtoTorch Converter. Functions and classes offered by each
of these modules can be used in Python. While the deep
learning module runs on PyTorch [5] to make use of the
GPU acceleration, the data preprocessing module utilizes the
geospatial computation power of Apache Sedona [15] and runs
on PySpark to allow the processing in a distributed cluster

TABLE I: Features Supported by Spatiotemporal Deep Learn-
ing Frameworks

Grid Scalable

Preprocessing

Library Spatial Temporal Raster

Geometric2DR [33] X

PT Geometric [34]

TF Geometric [35]

GEM [36]

Spektral [38]

TorchGeo [16]

Dynamic GEM [12]

ANESNANANANYANAYAS
AN RN R R L N R R
S| 3| 3| 3| 3| >|x|x
AR R RS
[%[> || % |x|x

PT Geometric
Temporal [11]

Our Work:
GeoTorchAl

AN
AN
<
AN
<

computing setting. In the case of scalable deep learning with
the dataset preprocessed in a distributed manner, DFtoTorch
Converter module works as an intermediate module between
the two in order to convert the preprocessed DataFrame
into trainable PyTorch dataset. Figure 3 depicts the system
architecture of GeoTorchAl

Deep Learning
< 1
D~ « -5

Neural Network Layers

PyTorch C» i

| Datasets Classes

Computing
Libraries [

Data Preprocessing

H i

! |

. i

. .Raslerc;> Map Algebra NDI = Transform Features = Write :

H]

H i

. | Vector= Partition = Adjacency = Join = Form Tensor = Write i

H i

Apache IZ>‘ ;
]

Sedona] G !

i | Shape File GeoParquet Text File WKB/WKT :

. GeoTIFF CSV GeoJSON JSON |1

U

Fig. 3: System Architecture of the Proposed Framework

A. Deep Learning Module

The deep learning module offers three sub-modules for the
raster and grid-based domains, including Datasets, Models,
and Transforms, as depicted in Figure 4. This section provides
an overview of these sub-modules.

1) GeoTorchAl Datasets: GeoTorchAl datasets module has
two different packages for raster datasets and grid-based
spatiotemporal datasets. Each of these packages contains easy-
to-use benchmark datasets for widely used applications in
the literature. GeoTorchAl datasets are created by extending
torch.utils.data.Dataset class from PyTorch and uses the
same iterator. That is why these datasets can be accessed and
iterated similarly to PyTorch datasets and other datasets pro-
vided by libraries in the PyTorch ecosystem, such as Torchvi-
sion [9]. Users can split a GeoTorchAl dataset into train

and test sets and pass them to torch.utils.data.DataLoader
to load samples as batches as well as in parallel by
torch.multiprocessing workers. They can include transfor-
mation operations to the datasets using transforms offered
by the geotorchai.transforms package or any user-defined
transformations. Also, GeoTorchAl datasets can be loaded into
either GPU or CPU based on client device configuration.

! | Benchmark Dataset | ;

- H-o

i Transformed Dataset

ST Grid

Preprocessing | Preprocessed; ﬁ ;
MOdUIe Da[asc{ : :

Data Loader

. Parameters : ;

— i Training Flow !
- ! i | DataLoader - !
:gD —] T @ i
‘ { & Train E:>) i

1 : Trained Model !

: Models
i Deep Learning Module !

Fig. 4: GeoTorchAl Deep Learning Module

Raster

Inference

GeoTorchAl datasets module provides classes that allow
defining any custom datasets instead of relying only on
ready-to-use benchmark datasets. These classes are helpful
in loading datasets that are transformed offline or created
from raw spatiotemporal datasets using our preprocessing
module described in Section III-B. Even if a dataset is not
transformed or processed using our preprocessing module, it
can still be loaded with GeoTorchAl. In the case of raster
datasets, users can select the spectral bands they want to
include in the feature vector. Besides, GeoTorchAl raster
datasets provide the flexibility of including additional feature
vectors extracted from raster images so that these datasets can
be used to train models such as DeepSat [13] and Deepsat
V2 [14], as discussed in Section II-C. For those users who
lack domain knowledge on these spectral features of satellite
images, our raster datasets support automatically extracting
some commonly used spectral features and including them in
the feature vector. Listing 1 shows the usage of a raster dataset.
Setting the parameter include_additional_features to True
in line 4 indicates that additional raster image features will
automatically be extracted and included in the feature vector.
These additional features are described in Section III-B2.

from geotorchai.datasets.raster import EuroSAT

eurosat_data = EuroSAT (root="data_path",
include_additional_features=True)

inputs, labels, features = eurosat_datal[0]

print (inputs.shape, labels.shape, features.shape)

L T

Listing 1: Defining a GeoTorchAl Raster Dataset

Our spatiotemporal datasets provide three flexible options
for retrieving the samples during an iteration, following the

representations discussed in Section II-B. Firstly data samples
can be iterated using the basic representation as shown in
Listing 2. Setting the parameter lead_time to 24 in line 3
indicates that y_data will be at 24" timestep after the x_data.

from geotorchai.datasets.grid import Temperature

weather_data = Temperature (root="data_path",
x_data, y_data = weather_data[0]
print (x_data.shape, y_data.shape)

lead_time=24)

GUoR W -

Listing 2: Basic Representation of a Grid-Based Dataset

Secondly, samples can also be retrieved as sequences of
history and prediction following the sequential representation
to enable the training of ConvLSTM [28] and other sequence
models. Listing 3 shows the usage of such a representa-
tion in GeoTorchAl. The only difference with Listing 2 is
the addition of line 4. The parameters history_length and
prediction_length in line 4 indicate that z_data will consist
of 48 timesteps, and y_data will consist of 24 timesteps
immediately following the timesteps of xz_data.

from geotorchai.datasets.grid import Temperature

weather_data = Temperature (root="data_path")

weather_data.set_sequential_representation (history_length=
48, prediction_length=24)

x_data, y_data = weather_datal[O0]

print (x_data.shape, y_data.shape)

R T S I S

Listing 3: Sequential Representation of a Grid-Based Dataset

Thirdly, data samples can be accessed in terms of closeness,
period, and trend features using the periodical representation
as proposed in ST-ResNet [2] so that they can be used to train
models such as ST-ResNet and DeepSTN+ [27]. The process
of applying the representation in GeoTorchAl is outlined in
Listing 4. Similarly to the Listing 3, line 4 sets the periodical
representation with the lengths of the most recent, recent, and
least recent observations, respectively.

from geotorchai.datasets.grid import Temperature

weather_data.set_periodical_representation(len_closeness=3,
len_period=4, len_trend=4)
data = weather_datal[0] 6
print (data["x_closeness"].shape, data["x_period"].shape, 7
data["x_trend"].shape, data["y_data"].shape) 8

1
2
weather_data = Temperature (root="data_path") 3
4
5

Listing 4: Periodical Representation of a Grid-Based Dataset

Besides, each benchmark dataset provides the features and
properties proposed in the corresponding dataset. For both
categories of datasets (raster and grid-based), we minimize
the number of public methods and mandatory parameters for
ease of usage while providing some optional parameters so
that datasets can be customized based on user preference.
The benchmark datasets provided by the GeoTorchAl datasets
module cover domains such as traffic forecasting, taxi and
bike flow prediction, crowd volume prediction, raster image

classification, and raster image segmentation. Besides, it also
contains various datasets for weather forecasting, which in-
clude but are not limited to the prediction of temperature,
precipitation, geopotential, cloud coverage, and solar radiation.

2) GeoTorchAl Models: Similarly to the datasets module,
the models module also contains two packages - raster mod-
els and grid-based spatiotemporal models. These packages
provide neural network layers for state-of-the-art raster and
spatiotemporal models in the literature. Similarly to the neural
network layers in PyTorch, GeoTorchAl models extend the
torch.nn.Module class so that these models can be used
as standalone neural network layers in Python as any other
PyTorch neural network layers.

Each model is implemented efficiently using existing Py-
Torch neural network layers as building blocks. As already
discussed in the datasets module under Section III-Al, we
minimize the number of public methods and mandatory
parameters in each layer class. Few public methods and
sufficient optional parameters allow users to customize the
layers according to their requirements. Models can be run on
either CPU or GPU. Both incremental and cumulative training
approaches are supported. In the case of incremental training,
model weights are updated after training every batch, while
cumulative training updates the weights once at the end of
an epoch. Listings 5 and 6 show how to define a grid-based
model and a raster model, respectively. Listing 5 shows the
process of defining a model using the periodical represen-
tation in terms of most recent, recent, and distant features.
Parameter external_dim = None in line 3 indicates that no
external factors will be considered. Parameters x_closeness,
x_period, and x_trend in line 4 denote the most recent
observations, near history, and distant history, respectively.

from geotorchai.models.grid import STResNet

model = STResNet (external_dim=None)
outputs = model (x_closeness, x_period, x_trend)

oW -

Listing 5: Defining a Sample Grid-Based Model

Listing 6 shows the definition of a raster classification
model. The parameters in line 3 are set based on the tar-
get training dataset. Parameters in_channels, in_height,
in_width, and num_classes represent the number of chan-
nels or attributes, image height, image width, and the number
of classes in the training dataset, respectively. The last pa-
rameter num_filtered_features stands for the number of
additional extracted features to be included in the feature
vector. Parameters inputs and features in line 5 denote
the images of a batch and additional extracted features of
corresponding images.

from geotorchai.models.raster import DeepSatV2

ml = DeepSatV2 (in_channels=13, in_height=64, in_width=64,
num_classes=10, num_filtered_features=13)
ml (inputs, features)

[E R SRR

outputs =

Listing 6: Defining a Sample Raster Model

Models available under the GeoTorchAI models module in
the grid-based category can be applied to any forecasting task,
such as weather forecasting, traffic flow forecasting, traffic
volume forecasting, and crowd volume prediction. Besides,
this module also contains models for raster imagery applica-
tions such as raster image classification and raster image seg-
mentation. Some of the raster and grid-based spatiotemporal
models included with GeoTorchAl are periodical CNN, Con-
vLSTM [28], ST-ResNet [2], DeepSTN+ [27], DeepSAT [13],
DeepSAT-V2 [14], SatCNN [31], FCN [29], and UNet [30].
Among these models, Periodical CNN, ConvLSTM, ST-
ResNet, and DeepSTN+ can be applied to spatiotemporal
forecasting tasks, while DeepSAT, DeepSAT-V2, and SatCNN
can be used to classify raster images. Models such as FCN
and UNet are applicable to raster image segmentation tasks.

3) GeolorchAl Transforms: GeoTorchAl transforms
module provides transformation operations that can
be applied to GeoTorchAl datasets during model
training. Similar to Torchvision transformations,
GeoTorchAl transforms can also be chained together
using torchvision.transforms.Compose. Transformation
operations can either be passed as parameters when creating
a dataset or be applied to samples when iterating over a
dataset. GeoTorchAl raster transformation operations allow
adding new feature vectors such as the normalized difference
index of two bands as a new band to the raster image. As
discussed earlier in Section II-C, these features improve the
efficiency of modeling raster images. GeoTorchAl also allows
transforming raster images offline before model training
in a cluster computing environment, which we discuss
later in GeoTorchAl preprocessing module under Section
II-B. Listing 7 shows a sample transformation operation
on GeoTorchAl. The selected transformation operation,
appending normalized difference index of bands 1 and 2, can
be applied to all sample images in the dataset during the
training on the fly.

from geotorchai.transforms.raster import
AppendNormalizedDifferenceIndex
from geotorchai.datasets.raster import EuroSAT

append = AppendNormalizedDifferenceIndex (band_indexl=1,
band_index2=2)
transform=append)

R T I S

train_data = EuroSAT (root="data_path",

Listing 7: Defining a Sample Transformation Operation

B. Data Preprocessing Module

Raw spatiotemporal datasets require a number of prepro-
cessing steps in order to convert them into spatiotemporal
tensors described in Section II-A. Usually, these raw datasets
are very large in size, and converting them into tensors
requires a long processing time as well as high memory.
For example, the TaxiNYC dataset used in STDN [1] has
been prepared from New York City (NYC) taxi trip records
data [39], which contains taxi trip information for every month
since January 2009, and the size of each month's dataset is
more than 2GB. Besides converting the geospatial coverage

of the dataset into an m x n grid and desired temporal range
into T time intervals, a user also needs to aggregate the
data samples within each grid cell at every time interval.
This aggregation process requires the application of time-
consuming and memory-hungry spatial join queries. Besides
spatiotemporal datasets, raster datasets also require prepro-
cessing operations such as extracting raster image features,
calculating normalized difference index, appending new bands
to the image, deleting bands from the image, etc. Since raster
image datasets are also huge in volume, processing raster
images on distributed cluster computing systems can reduce
the processing delay and memory-related errors. Performing
the raster image transformations offline in a distributed setting
before model training instead of performing the same on the
fly during model training can reduce the model training time
and memory usage a lot.

Although the GeoTorchAl preprocessing module runs on
Apache Sedona [15], users can use its methods in a proper
Pythonic way. It has many Python functions for performing
various types of processing and transformation operations
on raster and spatiotemporal datasets. In order to enable
raster image transformation in a cluster computing setting,
we contribute to Apache Sedona and add necessary satel-
lite transformation and GeoTIFF image writing support to
Apache Sedona. Besides, the preprocessing module provides
various Python methods, which internally use methods added
to Apache Sedona to perform raster and spatiotemporal data
processing. Along with the methods for reading and writing
various spatial and non-spatial datasets as well as GeoTiff
raster images, GeoTorchAl preprocessing module contains two
sub-modules: one for spatiotemporal grid data preprocessing
and the other for raster image preprocessing.

Space ‘
SHP E> Partitioning :>
— Cell Polygons
@ Feature
M |:> Aggregation
Spatial Join

o

?Q o i
Partition; > coordnaie
E artitioning Spatial Indexing ST Features

Fig. 5: Example Steps of Spatiotemporal Data Preprocessing

1) Spatiotemporal Data Preprocessing: Preprocessing of
spatiotemporal data involves loading the dataset, converting
the dataset into a spatiotemporal tensor, X" (details in
Section II-A2), and writing the tensor into the disk for further
usages, such as model training and testing. As discussed earlier
in Section III-B, converting a spatiotemporal dataset into grid-
based tensors includes preprocessing steps which include but
are not limited to the partitioning of geographical space into
a grid, calculating adjacency between geographical objects
or grid cells, slicing the temporal range of the dataset into
a number of time intervals, aggregating the feature vectors
within each time interval for each grid cell. Available methods
for spatiotemporal data processing in GeoTorchAl are imple-

mented using efficient spatial joins on Apache Sedona as well
as other joins and aggregation features of PySpark DataFrame.
These spatial joins and other aggregation operations are a
black box to the users of GeoTorchAl, and they can perform
these operations by calling a minimum number of methods
from the classes SpacePartition and ST Manager under
the package geotorchai.preprocessing.grid. Figure S depicts
some example steps of processing spatiotemporal non-imagery
datasets. Besides forming trainable grid-based spatiotempo-
ral tensors, the preprocessing module also supports the re-
partitioning of grid-based spatial datasets by reducing the data
volume with an end goal of reducing the training time [40].

Listing 8 shows how to convert a Spark DataFrame con-
sisting of raw datasets into a DataFrame of spatiotemporal
tensor format. Line 3 in the listing creates a spatial geometry-
type column named point from the columns lat and lon. The
line 6 in the listing converts the geographical coverage of the
dataset into a 12 x 16 grid and divides the total temporal
range into various time intervals of length 30 minutes. The
same method also aggregates the feature by counting the
number of points covered by each temporal interval inside each
grid cell. Method get_st_grid_dataframe also takes some
optional parameters providing more controls to the tensor
generation process. The details can be found in the API
documentation of GeoTorchAl. The DataF'rame returned by
the method get_st_grid_dataframe can be passed to the
method get_st_grid_array under the class ST Manager to
further convert it into a numpy array for the purpose of
loading into PyTorch.

from geotorchai.preprocessing.grid import STManager as stm

spatial_df = stm.add_spatial_points (df=data_df, lat_column=
"lat", lon_column="lon", new_column_alias="point")

st_df = stm.get_st_grid_dataframe (geo_df=spatial_df,
geometry="point", partitions_x=12, partitions_y=16,
col_date="time_column", step_duration_sec=1800)

LI = Y N T

Listing 8: Aggregating Features Within Grid Cells

2) Raster Data Preprocessing: Preprocessing operations
performed on raster images can be classified into two cat-
egories - transformation operations and map algebra opera-
tions. Transformation operations are helpful in modifying the
spectral bands of a raster image, such as normalizing a band,
appending the normalized difference index between two bands
as a separate band, deleting a band, inserting a new band,
masking a band on an upper or lower threshold, etc. On the
other hand, map algebra operations are used to extract features
from raster images, such as getting different types of nor-
malized difference indices, getting the mean, mode, modulus,
and square root of a band, adding, subtracting, multiplying,
and dividing bands, bitwise logical operations on bands, etc.
Figure 6 depicts a few examples of raster image preprocess-
ing. Besides these operations, our preprocessing module also
allows extracting features related Gray-Level Co-occurrence
Matrix (GLCM) of a raster image, such as GLCM contrast,
GLCM dissimilarity, GLCM ASM, GLCM homogeneity, and

GLCM correlation. Raster image classification models such
as DeepSAT-V2 recommend the inclusion of these features
into the feature vector. The GLCM is a matrix that tracks
how frequently various pixel brightness value combinations
appear in an image [41]. GLCM features define various spatial
relationships among pixels in an image [41].

l:>‘ Get Bands]r:{>
b 4+

Find Normalized :> Append Normalized
Difference Index Difference Index

P P P P P Py P

; GLCM Contrast GLCM Dissimilarity GLCM ASM]
- — i ,
== :

i

[GLCM Homogeneity] [GLCM Correlation]

i
Hand Crafted Features i

Fig. 6: Raster Image Preprocessing Example

Listing 9 shows an example of loading, transforming, and
writing raster images. The method load_geotif f_image in
line 5 can take some optional parameters to control the coordi-
nate reference system of raster images during image loading.
Similarly, the method write_geotif f_image in line 9 also
takes optional parameters. We refer to the API documentation
for the details.

import geotorchai.preprocessing as gpp
from geotorchai.preprocessing.raster import
RasterProcessing as rp

rs_df = gpp.load_geotiff_ image (path_to_dataset="path")
appended_df = rp.append_normalized_difference_index (rs_df,
band_index1=0, band_index2=1, column_data="data",
column_n_bands="nBands")
gpp.write_geotiff_ image (raster_df=appended_df,
destination_path="new_path")

- 0 ® 9 U AW -

S

Listing 9: An Example of Raster Transformation

C. DFtoTorch Converter

The product of scalable preprocessing in Apache Sedona
is a DataFrame, a structured form equivalent to a relational
database table, composed of organized columns. Notably,
DataFrames procured from Apache Sedona or Spark are not
inherently suited for direct utilization as a PyTorch Dataset,
which conventionally employs tensors. To adapt preprocessed
DataFrames for PyTorch datasets, a straightforward but in-
efficient solution exists. The process begins by collecting
the full preprocessed DataFrame onto the master node from
all worker nodes. The DataFrame is then transformed into
an array structure, subsequently stored on the disk. This
stored array is imported into PyTorch and converted into
the requisite tensor format. However, this approach presents
considerable drawbacks. In scenarios of distributed training
and preprocessing, the large volume nature of DataFrames be-
comes a logistical challenge, often exceeding the master node’s
memory capabilities. Additionally, the operations of gathering
the extensive data and writing to files are time-intensive,
potentially hampering the overall workflow efficiency.

Addressing the limitations previously outlined, we propose
an additional component, DFtoTorch Converter, designed to

Transformation Specs

Preprocessing || Preprocessed DF Formatted Row Transformer]
Module i DataFrame Formatter DataFrame :

Converted Dataset

i . Application Type

; - DFtoTorch Converter !

Parameters

Fig. 7: Preprocessed DataFrame to PyTorch dataset converter

facilitate the mapping of preprocessed DataFrames into Py-
Torch datasets. The structural design of this innovative module
is illustrated in Figure 7. The DFtoTorch Converter consists of
two primary segments: the DF Formatter and the Row Trans-
former. The DF Formatter takes the preprocessed DataFrame
as input and efficiently maps each individual row into an
array format, mirroring the eventual tensor configuration. This
procedure is executed in a distributed manner, negating the
need for centralized aggregation of the entire DataFrame on
the master node. Importantly, the parameters of this mapping
are influenced by the intended application domain, including
classifications, segmentations, or spatiotemporal predictions,
and it may incorporate additional parameters contingent on
user requirements. However, the output of the mapping process
is still a DataFrame, which is processed subsequently by the
Row Transformer component to yield PyTorch tensors from
each row in the DataFrame. This transformation leverages the
Petastorm tool [42], executing user-specified transformations
on the DataFrame rows and returning the rows as batches.
Parameters guiding this phase comprise batch size, trans-
formation operations, and application-specific variables, for
instance, dimensions pertinent to raster imagery tasks. The
transformation spec returned by this step is required during
iterating over the converted dataset with PyTorch dataloaders.

IV. DESIGN PRINCIPLES

GeoTorchAl is designed in such a way that it has the
necessary building blocks for developing raster and spatiotem-
poral applications within the PyTorch ecosystem. Various
functionalities available in GeoTorchAl deep learning mod-
ule are compatible with PyTorch core units, such as neural
network layers, datasets, and transformations. We make the
deep learning module of GeoTorchAl GPU compatible so that
PyTorch-provided scalability and parallelism on GPU can be
achieved with GPU-configured devices.

Although the data preprocessing module has dependencies
on external big data processing libraries such as PySpark and
Apache Sedona, the deep learning module only depends on
PyTorch. Since the datasets component of the deep learning
module provides preprocessed and trainable state-of-the-art
benchmark datasets, designing applications with such bench-
mark datasets can be completed without requiring big data-
related dependencies. Furthermore, to help machine learning
practitioners build raster and spatiotemporal applications with
their preferred raw datasets, our preprocessing module enables
raster and spatiotemporal data processing in a pure Pythonic

way without requiring the coding knowledge of Apache Spark,
Apache Sedona, and other big data processing libraries while
providing the scalability of Apache Spark at the same time.

Our preprocessing module is designed such that it mini-
mizes the number of methods and classes in the API. Users
can perform end-to-end spatiotemporal data preprocessing,
which starts by loading raw datasets and ends by generating
a trainable Tensor-shaped array, with a minimum number of
method calls. It helps the users understand the API fast and
reduces their confusion.

The source code of GeoTorchAl is publicly available on
GitHub '. The repository is ready to accept contributions from
external contributors with novel feature recommendations. In
order to ensure the quality and proper readability of the
codebase, we apply standard software development practices
while writing code for all components of GeoTorchAl. The
documentation on the API usage has been made available
online and is available on the GitHub repository. The API
usage guide documents all classes and methods thoroughly
with examples. The documentation also provides end-to-end
code examples and tutorials for all types of use cases to ease
the adoption of GeoTorchAl to related applications. Unit tests
have been added to test the methods of various components
properly. The library can be deployed on platforms such as
Linux, Windows, and macOS.

V. EXPERIMENTAL EVALUATION

Using some of our benchmark datasets, we assess the
performance of the deep learning module of our proposed
framework, GeoTorchAl, on raster and spatiotemporal models.
We also compare the models in terms of the training time and
evaluate the impact of several input parameters on training
time in both CPU-based and GPU-based training. In addition,
we check the effectiveness of the preprocessing module on
tasks such as raster processing and spatiotemporal grid-based
tensor preparation from raw datasets.

A. Experimental Settings

1) System Configuration: On a machine with an Intel
NVIDIA GPU (GM107GL [Quadro K2200]) with 640 CUDA
cores, 120 GB of RAM, and a 4 TB hard drive, we conduct
all the model training experiments. While the majority of the
experiments are run with GPU enabled, we also run a few on
the CPU to compare runtimes between the two.

2) Datasets: GeoTorchAl benchmark datasets used by grid-
based spatiotemporal applications are listed in Table II, while
Table III lists the raster imagery datasets. In addition to
these datasets, GeoTorchAl contains five different ready-to-
use weather forecasting datasets, which include forecasting of
temperature, geopotential, total precipitation, total cloud cover,
and total incident solar radiation [43]. All of these datasets
contain weather data for 2018 in grid shape 5.625 deg vs.
2.8125 deg, but users have the flexibility of changing these
parameters according to their needs. The exact shape of the

Thttps://github.com/wherobots/GeoTorchAl

grid in 5.625 deg vs. 2.8125 deg is 32 x 64. Weather records
in every dataset are separated by one-hour time intervals.
We perform the experimental evaluation of the deep learning
module on four types of applications: spatiotemporal traffic
prediction task, weather forecasting task, satellite image clas-
sification task, and satellite image segmentation task. For the
spatiotemporal prediction task, we use three datasets from
GeoTorchAl benchmark datasets: BikeNYC-DeepSTN [27],
TaxiBJ21 [44], and YellowTrip-NYC dataset prepared with
GeoTorchAl preprocessing module. We prepare a spatiotem-
poral tensor from NYC yellow trip records [39] and use
the prepared tensor to train grid-based spatiotemporal models
on traffic forecasting applications. The details of this dataset
are available in Table II. The advantage of this dataset is
that it supports all spatiotemporal tensor representations and
can be used to train any spatiotemporal prediction model, a
feature missing in all other NYC-based datasets. We evaluate
the weather forecasting task with three datasets (temperature,
total precipitation, and total cloud cover) out of five weather
forecasting datasets described in the previous paragraph. On
the other hand, for the task of satellite image classification, we
use the datasets EuroSAT [3] and SlumDetection [45]. Satellite
image segmentation is performed with 38-Cloud dataset [4].
3) Evaluation Metrics: We evaluate the predictive perfor-
mance of spatiotemporal models with two metrics: Mean
Absolute Error (MAE) and Root Mean Square Error. For
the satellite image classification and segmentation tasks, we
measure the performance in terms of classification and seg-
mentation accuracy. In the case of evaluating the preprocessing
module, the performance is measured against the elapsed time.

B. Evaluating Spatiotemporal Tensor Preparation

In order to evaluate the scalability of the preprocessing mod-
ule in terms of preparing a grid-based spatiotemporal tensor,
we compare the elapsed time and memory consumption with
the GeoPandas library [46]. It should be noted that we perform
the experiments in a single machine instead of a distributed
environment for a fair comparison with the GeoPandas library
because GeoPandas cannot run in a distributed setting. As the
evaluation dataset in this experiment, we pick the NYC tax
trip data [39] and take four versions of this dataset varying the
size. The number of trip records in these four datasets are 1.4
million, 14 million, 100 million, and 250 million, respectively.
The taxi trip dataset of a single month contains approximately
14 million records. For the smallest dataset with 1.4 million
samples, we perform a spatially stratified sampling on a single
month's dataset. We prepare the larger datasets by merging the
records from several consecutive months. Figure 9 depicts the
scalability of our preprocessing module in terms of preparing
a grid-based spatiotemporal tensor.

The depicted figure shows that the GeoTorchAl prepro-
cessing module outperforms the GeoPandas library by order
of magnitude in terms of both memory usage and elapsed
time. Memory usage by the GeoPandas library increases
significantly as the data size increases and results in an out-
of-memory error for the largest dataset, while GeoTorchAl

TABLE II: Grid-Based Spatiotemporal Datasets

Dataset Data Type Grid Shape Time Interval Time Duration
BikeNYC-DeepSTN[27] Bike Flow 21 x 12 1 Hour 01/04/2014 - 30/09/2014
TaxiNYC-STDN][1] Taxi Flow and Volume 10 x 20 30 Minutes 01/01/2015 - 01/03/2015
BikeNYC-STDN[1] Bike Flow and Volume 10 x 20 30 Minutes 01/07/2016 - 29/08/2016
TaxiBJ21[44] Taxi Flow 32 x 32 30 Minutes November 2012, November 2014, and November 2015
YellowTrip-NYC Taxi Pickup and Dropoff 12 X 16 30 Minutes 01/10/2010 - 31/12/2010
TABLE III: Raster Image Datasets models show convergence after different numbers of epochs.
Dataset Type Image Classes | Bands | We train each model until MSE or RMSE continues to reduce
Shape on the validation dataset. We use early stopping criteria to stop
SAT-6[13] Multi-class Classification 28 x 28 6 4 L . : :
SATA] Mult-class Classificaton |28 28 2 2 the tra1n1n'g early if the performance on the validation dataset
EuroSAT[3] Multi-class Classification 64 % 64 10 13 |does not improve after a number of epochs. We record the
SlumDetection[45] Binary Classification 32 x 32 2 4 |MAE and RMSE obtained by the trained models in each of
38-Cloud[4] Segmentation 384 x 384 4 Ithe 5 iterations and report the average of the results as well
as the variation from the average. We follow the incremental
3 — GeoTorchAl i [y training procedure where loss is back-propagated, and model
e .
g 6000 GeoPandas £ 20000 GeoPandas weights are updated after every batch of data.
% 4000 % 15000
£ 3 10000 TABLE IV: Traffic Prediction with Spatiotemporal Models
22000 s
a g 5000 Datasets Metric Models
;_Trﬁ = Periodical CNN ConvLSTM ST-ResNet DeepSTN+
0 w0 1000 250.0 0 o 100.0 >55.0 BikeNYC-DeepSTN MAE 6.0321+0.317 4.65540.116 2.91240.090 2.325+0.056
. No. of Re‘cords in Million . : No. of Relcords in Million : RMSE 14.495+0.351 11.83240.254 7.31740.227 6.085+0.133
TaxiBJ21 MAE 0.048+0.005 0.08240.006 0.044£0.004 0.01940.003
. . . RMSE 0.08740.008 0.12040.009 0.073£0.005 0.032£0.006
(a) ComparlngElapsed Tlme (b) Comparlng Memory Usage YellowTrip-NYC MAE 0.6261+0.082 0.068+0.009 0.061£0.010 0.00084-0.0001
RMSE 0.810£0.066 0.164+0.016 0.138£0.056 0.03440.007

Fig. 8: Elapsed Time and Memory Usage During Grid-Based
Spatiotemporal Tensor Preparation

remains consistent in terms of memory for all datasets. The
processing time in the GeoPandas library is also much higher
compared to that of GeoTorchAl. GeoPnadas library cannot
finish the processing for the largest dataset and results in
memory error after 2.5 hours of processing.

C. Evaluating Spatiotemporal Traffic Prediction Task

For the BikeNYC-DeepSTN dataset [27], the task is to
predict the flow of the bikes in New York City at a future
time interval, given the historical bike-flow records of a fixed
number of previous time intervals. Similarly, in the case of
TaxiBJ21 dataset [44], the task is to predict the flow of
taxis in Beijing City. In the case of the YellowTrip-NYC
dataset formed with the GeoTorchAl preprocessing module
and released by us, we predict the number of taxi pickups
and dropoffs at various cells in New York City. We split each
of these datasets into three parts: train, validation, and test
sets. The training dataset consists of the records for the first
80% of time periods. Out of the remaining 20% records, the
first half of the records denote the validation dataset, while
the test dataset contains the last half. Training and validation
datasets are used during the training process, and we evaluate
all models on the test dataset. Mean squared error loss and
Adam optimizer are used as the loss function and optimization
function, respectively. We initialize and train each model for
five iterations, while each iteration consists of epochs. The
number of epochs is not fixed for all models because different

Table IV reports the prediction errors of various models on
various traffic datasets. Reported results indicate that although
all models perform very close to each other on TaxiBJ21 [44]
dataset, model DeepSTN+ [27] outperforms other models sig-
nificantly on the BikeNYC-DeepSTN dataset and YellowTrip-
NYC dataset. It also proves the correctness of the YellowTrip-
NYC dataset prepared using the preprocessing module because
models that show high performance on other datasets also
perform well on this dataset. The superior performance of
DeepSTN+ and ST-ResNet over the ConvLSTM model val-
idates the usefulness of closeness, period, and trend features
proposed by ST-ResNet [2] model. Also, the performance of a
model changes very slightly from one run to another run which
proves the consistency of a model trained using GeoTorchAl.

D. Evaluating Spatiotemporal Weather Forecasting Task

The approach followed for evaluating weather forecasting
tasks is similar to the approach used for the evaluation of traffic
prediction applications. We evaluate the weather forecasting
performance of four models previously used for evaluating
traffic prediction in Section V-C with three weather datasets -
temperature, total precipitation, and total cloud cover. Hyper-
parameter settings are similar to those mentioned in Section
V-C, and datasets are distributed into train, validation, and test
sets in a similar way. Another similarity with the evaluation of
traffic prediction is that we train each model for 5 iterations
(each iteration with multiple epochs) and report the average
MAE and RMSE along with the maximum and minimum
variations from the average.

TABLE V: Weather Forecasting with Spatiotemporal Models

Datasets Metric Models

Periodical CNN ConvLSTM ST-ResNet DeepSTN+
Temperature MAE 2.398+0.503 0.181£0.037 1.284+0.245 0.168£0.044
RMSE 3.361£0.318 0.288+0.055 2.85240.187 0.27440.029
Total MAE 0.00014+ =~ 0 0.000059+ ~ 0 0.00018+ ~ O 0.000051+ ~ O
Precipitation RMSE 0.00040+ =~ 0 0.00032+ =~ 0 0.0016+ =~ 0 0.00020+ =~ 0
Total MAE 0.265+£0.164 0.07240.004 0.098259+0.008 0.060£0.006
Cloud Cover RMSE 0.32040.093 0.135+0.026 0.176£0.088 0.105£0.061

Table V reports the mean absolute error and root mean
square error of spatiotemporal models on various weather fore-
casting datasets. Similarly to the traffic prediction applications,
model DeepSTN+ outperforms all other models on weather
forecasting tasks also. It should be noted that the model Con-
VLSTM performs almost similarly to the DeepSTN+ model
and outperforms other models on all weather forecasting
datasets. This is due to the fact that the ConvLSTM model is
specially designed for weather forecasting applications which
are less impacted by closeness, period, and trend factors
compared to the traffic prediction tasks.

E. Evaluating Raster Classification and Segmentation Tasks

We experiment with the raster image classification task
on two datasets: EuroSAT [3] and SAT6 [13], while 38-
Cloud [4] dataset is used for evaluating the segmentation
task. Those datasets that do not have training and test sets
predefined, such as EuroSAT, are divided into 80% training
set and 20% test set, and model evaluation is performed on the
test dataset. Models DeepSAT V2 [14] and SatCNN [31] are
used for experimenting with the classification task, while the
segmentation task is evaluated with UNet++ [47], UNet [30]
and Fully Convolutional Network (FCN) [29] models. We
utilize Cross Entropy Loss as the loss function for all models
while keeping the other parameters and the number of training
iterations the same as those used for traffic prediction and
weather forecasting tasks.

From each dataset, we extract six textural features for
classification with DeepSAT V2 utilizing the authors’ proposal
of the handcrafted features. Additionally, we extract seven
spectral features from the EuroSAT dataset as well as three
spectral characteristics from the SAT6 dataset. Different spec-
tral indices suggested in the literature, such as the Normalized
Density Vegetation Index (NDVI), the Normalized Density
Water Index (NDWI), etc., are examples of spectral features.
Because the SAT6 dataset lacks the short-wave infrared band,
which is necessary for many spectral indices, we are unable
to extract all the spectral indices from this dataset. Textural
features retrieved from each dataset include contrast, dissim-
ilarity, correlation, homogeneity, momentum, and energy. All
the bands from each dataset listed in Table III are included
in the feature vectors. Table VI reports the classification
and segmentation accuracy of evaluated models on various
datasets. According to the reported results, the performance
of the tested models on both datasets is relatively comparable,
and none of the models can completely dominate all datasets.
Even though DeepSAT V2 [14] has fewer convolution layers
than SatCNN [31], it performs equally as well, demonstrating

the success of the feature fusion concept and the custom
features that DeepSAT V2 has put forth.

TABLE VI: Accuracy of Raster Models on Satellite Image
Classification and Segmentation

Model Dataset Application Accuracy
DeepSAT V2 EuroSAT Classification 94.07010.208%
SAT6 Classification | 99.3284+0.071%
SatCNN EuroSAT Classification 94.38540.755%
SAT6 Classification | 98.92140.100%
UNet 38-Cloud Segmentation 97.341+0.217%
FCN 38-Cloud Segmentation 96.90740.331%
UNet++ 38-Cloud Segmentation 98.49010.407%

F. Evaluating Training Time

To compare the deep learning models in terms of the train-
ing time, we record the average training time of all the models
for an epoch and report it in Table VII. For the grid-based
spatiotemporal models, such as Periodical CNN, ConvLSTM,
ST-ResNet, and DeepSTN+, we report the training time for
training with the Temperature dataset. Training time reported
for the raster image classification models such as DeepSAT
V2 and SatCNN includes the training with EuroSAT images.
In the case of raster image segmentation models, including
Fully Convolutional Network, UNet, and UNet++, we report
the training time for training with the 38-Cloud dataset.

TABLE VII: Training Time of Various Models for a Single
Epoch

Dataset Application Model Training Time Per Epoch

Periodical CNN 2.868 Seconds

Temperature Prediction ConvLSTM 588.094 Seconds
ST-ResNet 27.416 Seconds

DeepSTN+ 20.775 Seconds

EuroSAT Classification DeepSAT V2 172.570 seconds
SatCNN 897.383 seconds

FCN 1435.495 Seconds

38-Cloud Segmentation UNet 1765.574 Seconds

UNet++ 2139.914 Seconds

Based on the results reported in Table VII, it is evident that
ConvLSTM is the slowest running model, although it is not the
best-performing model in terms of MAE and RMSE according
to the results of the prediction reported in Tables IV and V.
The prediction model with the lowest error, DeepSTN+, runs
much faster than the ConvLSTM model. Regarding the raster
classification models, DeepSAT V2 runs more than 5 times
faster while both models have almost similar classification
accuracy according to Table VI. We observe a variation in this
trend in the case of raster segmentation models. UNet++ is the
slowest among the three segmentation models, and it is the best
model in terms of segmentation accuracy according to Table
VI. Analyzing the training time and performance of prediction,
classification, and segmentation models, we can conclude that
the performance of a model is not directly related to the
training time. Usually, models consisting of lots of neural net-
work layers and parameters run very slowly, but these models
with many layers and parameters may not always have the
lowest prediction error or highest classification/segmentation

accuracy, and faster-running models with simple architecture
might outperform them.

G. Evaluating the Impact of Grid Shape and Number of Bands

To evaluate the impact of grid shape and number of bands,
we vary the number of bands and grid size and measure the
training time of a single epoch. The training time is measured
by running the models separately on CPU and GPU. The
model SatCNN is trained with the EuroSAT dataset for a
single epoch by setting all the hyperparameters as described in
Section V-E. We train the model on 3, 5, 8, 10, and 13 bands,
respectively, to evaluate the impact of the number of bands on
the training time. We use three grids for the evaluation of the
grid size: 28 X 28, 32 x 32, and 64 x 64. During the experiments
on the grid size, bands are fixed to have three RGB bands.

wn wn
© ©
C == CPU C
5600 mm cru o S
Q el Q
@ | @
f 23l f
< 400 < 4
£ £ |
@200 o o
= f 123
< c %
© 0 ‘© 0 |
= 28x28 32x32 64x64 o 3 5 8 10 13
Gride shape Number of channels

(a) Runtime vs Grid Shape (b) Runtime vs No. of Channels

Fig. 9: Time to Run an Epoch on Varying Number of Channels
and Grid Shapes

Figure 9 shows how variations in the number of bands
and grid size affect how long it takes to train an epoch. The
findings allow us to draw the conclusion that while grid shape
has a considerable influence on training time, the number
of channels or bands has no discernible effect. Additionally,
running a model on a GPU rather than a CPU can significantly
reduce the training time.

H. Evaluating the Impact of Raster Preprocessing

By employing the preprocessing module to do the raster
transformation operations before model training rather than
doing so on the fly while training, we assess the effectiveness
of our preprocessing module. When doing raster preprocessing
and model training separately, we record the total amount of
time spent on preprocessing for various counts of transfor-
mation operations, as well as the amount of time spent on
training the model using the modified images. In addition, we
also keep track of how long it takes to train a model while
performing similar transformations during training. We repeat
the procedure for transformation counts of 1, 2, 3, 4, and
5. The goal of each transformation operation is to append a
normalized difference index to the image data.

Table VIII reports the data preprocessing and model training
time in various settings. The effectiveness of our prepro-
cessing module is demonstrated by the fact that the sum of
pre-transformation time and model training time with pre-
transformed data is significantly less than the training time
with transformation on the fly. Although preprocessing time

TABLE VIII: Elapsed Time in Seconds for Various Training
and Preprocessing Settings

Transforms Train with Train with Pretransforms
Count Transforms Pretransforms
1 31302 22402 738
2 31896 22391 882
3 32188 22415 1020
4 32648 22396 1159
5 32977 22429 1276

can be further decreased by executing the preprocessing mod-
ule in a clustered environment, we execute the preprocessing
on a single machine in order to make a fair comparison.
Data loading, data transformation, and data writing are all
included in the preprocessing time that is shown in Table VIII.
The writing operation, which is done once at the end of all
transformations, dominates preprocessing time, resulting in a
trivial change in the preprocessing time along with an increase
in the number of transformations. Because no transformation
occurs during training with pre-transformed data, the training
time does not rise for a higher number of transformations.
The efficiency of pre-transformation with our preprocessing
module is proven by the fact that training time grows as
the number of transformations increases when transformations
happen during the training.

VI. CONCLUSION

In this study, we introduce GeoTorchAl, a spatiotempo-
ral deep-learning framework designed specifically for raster
imagery and grid-based non-imagery datasets. Emulating Py-
Torch’s structure, GeoTorchAl extends its foundational classes
to provide support for neural networks, datasets, and transfor-
mations, facilitating advanced deep learning applications on
grid-based spatiotemporal datasets and satellite image datasets
that have not been covered by existing deep learning frame-
works. Additionally, GeoTorchAI’s preprocessing module 1)
supports training and testing models using raw spatiotemporal
datasets rather than being limited to only ready-to-use bench-
mark datasets, and 2) supports scalable data preprocessing and
transformation, both of which further contribute to a significant
reduction in training time. Finally, DFtoTorch Converter in
GeoTorchAl can map processed DataFrames into PyTorch
tensors. We empirically assess the satellite image classification
and segmentation tasks, spatiotemporal traffic prediction and
weather forecasting tasks, scalability of the preprocessing
module, as well as how different input parameters affect
training time on both CPU and GPU. Scalable data preparation
prior to model training is effective, as shown by our empirical
evaluation of the preprocessing module.

By consistently incorporating new preprocessing functions,
transforms, benchmark datasets, and cutting-edge models, we
seek to improve the GeoTorchAl features. In the domains
of raster images and grid-based datasets, we are working on
incorporating new datasets and models from a more diverse
variety of domain applications.

[1]

[2]

[3]

[4

=

[5

=

[6]

[7]

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

H. Yao, X. Tang, H. Wei, G. Zheng, and Z. J. Li, “Revisiting spatial-
temporal similarity: A deep learning framework for traffic prediction,”
in AAAI, 2019.

J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, ser. AAATI’'17. AAAI Press,
2017, p. 1655-1661.

P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel
dataset and deep learning benchmark for land use and land cover classi-
fication,” IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2019.

S. Mohajerani and P. Saeedi, “Cloud-net: An end-to-end cloud detection
algorithm for landsat 8 imagery,” 07 2019, pp. 1029-1032.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, 1. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
http://tensorflow.org/

F. Chollet et al (2015)
https://github.com/fchollet/keras

T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” ArXiv, vol.
abs/1512.01274, 2015.

S. Marcel and Y. Rodriguez, “Torchvision the machine-vision package
of torch,” in Proceedings of the 18th ACM International Conference
on Multimedia, ser. MM ’10. New York, NY, USA: Association
for Computing Machinery, 2010, p. 1485-1488. [Online]. Available:
https://doi.org/10.1145/1873951.1874254

R. Jiang, D. Yin, Z. Wang, Y. Wang, J. Deng, H. Liu, Z. Cai, J. Deng,
X. Song, and R. Shibasaki, DL-Traff: Survey and Benchmark of Deep
Learning Models for Urban Traffic Prediction. New York, NY, USA:
Association for Computing Machinery, 2021, p. 4515-4525. [Online].
Available: https://doi.org/10.1145/3459637.3482000

B. Rozemberczki, P. Scherer, Y. He, G. Panagopoulos, A. Riedel,
M. Astefanoaei, O. Kiss, F. Beres, G. Lopez, N. Collignon, and
R. Sarkar, PyTorch Geometric Temporal: Spatiotemporal Signal
Processing with Neural Machine Learning Models. New York, NY,
USA: Association for Computing Machinery, 2021, p. 4564-4573.
[Online]. Available: https://doi.org/10.1145/3459637.3482014

P. Goyal, S. R. Chhetri, N. Mehrabi, E. Ferrara, and A. Canedo, “Dy-
namicgem: A library for dynamic graph embedding methods,” ArXiv,
vol. abs/1811.10734, 2018.

S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki, and
R. Nemani, “Deepsat: A learning framework for satellite imagery,”
in Proceedings of the 23rd SIGSPATIAL International Conference on
Advances in Geographic Information Systems, ser. SIGSPATIAL °15.
New York, NY, USA: Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2820783.2820816

Q. Liu, S. Basu, S. Ganguly, S. Mukhopadhyay, R. DiBiano, M. Karki,
and R. R. Nemani, “Deepsat v2: feature augmented convolutional neural
nets for satellite image classification,” Remote Sensing Letters, vol. 11,
pp. 156 — 165, 2019.

(2020) Apache sedona
https://sedona.apache.org/
A. J. Stewart, C. Robinson, I. A. Corley, A. Ortiz, J. M. L. Ferres,
and A. Banerjee, “Torchgeo: Deep learning with geospatial data,” ser.
SIGSPATIAL °22, 2022.

Keras. [Online]. Available:

(incubating). [Online]. Available:

(17]

[18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]
[34]

[35]

[36]

[37]

former on Time Series Forecasting.

K. Chowdhury and M. Sarwat, “Geotorch: A spatiotemporal deep
learning framework,” ser. SIGSPATIAL ’22, 2022.

——, “A demonstration of geotorchai: A spatiotemporal deep learning
framework,” in Companion of the 2023 International Conference on
Management of Data, ser. SIGMOD ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 195-198. [Online].
Available: https://doi.org/10.1145/3555041.3589734

S. Bhattacharya, C. Braun, and U. Leopold, “A tensor based framework
for large scale spatio-temporal raster data processing,” ISPRS - Inter-
national Archives of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, vol. XLII-4/W14, pp. 3-9, 08 2019.

H. Yao, F. Wu, J. Ke, X. Tang, Y. Jia, S. Lu, P. Gong, J. Ye, and Z. J. Li,
“Deep multi-view spatial-temporal network for taxi demand prediction,”
in AAAI 2018.

G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long- and
short-term temporal patterns with deep neural networks,” The 41st
International ACM SIGIR Conference on Research & Development in
Information Retrieval, 2018.

Y. Liang, S. Ke, J. Zhang, X. Yi, and Y. Zheng, “Geoman: Multi-
level attention networks for geo-sensory time series prediction,” in
Proceedings of the 27th International Joint Conference on Artificial
Intelligence, ser. IICAI’'18. AAAI Press, 2018, p. 3428-3434.

S.-Y. Shih, F-K. Sun, and H.-y. Lee, “Temporal pattern attention
for multivariate time series forecasting,” Mach. Learn., vol.
108, no. 8-9, p. 1421-1441, sep 2019. [Online]. Available:
https://doi.org/10.1007/s10994-019-05815-0

Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, ser. KDD *19. New York,
NY, USA: Association for Computing Machinery, 2019, p. 1720-1730.
[Online]. Available: https://doi.org/10.1145/3292500.3330884

S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan,
Enhancing the Locality and Breaking the Memory Bottleneck of Trans-
Red Hook, NY, USA: Curran
Associates Inc., 2019.

C. Zheng, X. Fan, C. Wang, and J. Qi, “Gman: A graph multi-attention
network for traffic prediction,” in AAAI, 2020.

Z. Lin, J. Feng, Z. Lu, Y. Li, and D. Jin, “Deepstn+: Context-aware
spatial-temporal neural network for crowd flow prediction in metropo-
lis,” Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 33, pp. 1020-1027, 07 2019.

X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c.
Woo, “Convolutional Istm network: A machine learning approach for
precipitation nowcasting,” in Proceedings of the 28th International
Conference on Neural Information Processing Systems - Volume 1, ser.
NIPS’15. Cambridge, MA, USA: MIT Press, 2015, p. 802-810.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 39, no. 4, pp. 640-651, 2017.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Medical Image Computing and
Computer-Assisted Intervention — MICCAI 2015, N. Navab, J. Horneg-
ger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International
Publishing, 2015, pp. 234-241.

Y. Zhong, F. Fei, Y. Liu, B. Zhao, H. Jiao, and L. Zhang, “Satcnn:
satellite image dataset classification using agile convolutional neural
networks,” Remote Sensing Letters, vol. 8, no. 2, pp. 136-145, 2017.
[Online]. Available: https://doi.org/10.1080/2150704X.2016.1235299

S. Basu, M. Karki, S. Mukhopadhyay, R. Dibiano, s. ganguly, R. Ne-
mani, and S. Gayaka, “Deep neural networks for texture classification—a
theoretical analysis,” Neural Networks, vol. 97, pp. 173-182, 01 2018.
P. Scherer and P. Lio’, “Learning distributed representations of graphs
with geo2dr,” ArXiv, vol. abs/2003.05926, 2020.

M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” ArXiv, vol. abs/1903.02428, 2019.

J. Hu, S. Qian, Q. Fang, Y. Wang, Q. Zhao, H. Zhang, and C. Xu, “Effi-
cient graph deep learning in tensorflow with tf_geometric,” Proceedings
of the 29th ACM International Conference on Multimedia, 2021.

P. Goyal and E. Ferrara, “Gem: A python package for graph embedding
methods,” Journal of Open Source Software, vol. 3, p. 876, 09 2018.
C. Data61, “Stellargraph machine learning library,”
https://github.com/stellargraph/stellargraph, 2018.

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46

[47]

D. Grattarola and C. Alippi, “Graph neural networks in tensorflow
and keras with spektral [application notes],” Comp. Intell. Mag.,
vol. 16, no. 1, p. 99-106, feb 2021. [Online]. Available:
https://doi.org/10.1109/MCI1.2020.3039072

(2009) Tlc trip record data. [Online]. Available:
https://www 1.nyc.gov/site/tlc/about/tlc-trip-record-data.page

K. Chowdhury, V. V. Meduri, and M. Sarwat, “A machine learning-aware
data re-partitioning framework for spatial datasets,” in 2022 IEEE 38th
International Conference on Data Engineering (ICDE), 2022, pp. 2426—
2439.

M. Hall-Beyer, “Glcm texture: A tutorial v. 3.0 march 2017,” 2017.

R. Gruener, O. Cheng, and Y. Litvin, “Introducing petastorm:
Uber atg’s data access library for deep learning,” URL:
hittps://eng.uber.com/petastorm/, 2018.

S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and
N. Thuerey, “Weatherbench: A benchmark data set for data-driven
weather forecasting,” Journal of Advances in Modeling Earth Systems,
vol. 12, 2020.

W. Jiang, “Taxibj21 : An open crowd flow dataset based on beijing taxi
gps trajectories,” Internet Technology Letters, 04 2021.

F. Baylé. (2017) Slum and informal settlements detection. [Online].
Available: https://www.kaggle.com/fedebayle/slums-argentina

K. Jordahl, “Geopandas: Python tools for geographic data,” URL:
https://github. com/geopandas/geopandas, 2014.

Z. Zhou, M. M. Rahman Siddiquee, N. Tajbakhsh, and J. Liang,
“Unet++: A nested u-net architecture for medical image segmentation,”
in Deep Learning in Medical Image Analysis and Multimodal Learning
for Clinical Decision Support, D. Stoyanov, Z. Taylor, G. Carneiro,
T. Syeda-Mahmood, A. Martel, L. Maier-Hein, J. M. R. Tavares,
A. Bradley, J. P. Papa, V. Belagiannis, J. C. Nascimento, Z. Lu, S. Con-
jeti, M. Moradi, H. Greenspan, and A. Madabhushi, Eds. Springer
International Publishing, 2018, pp. 3-11.

